当前位置:首页 > 产品中心 > taptapp国际版 > 一抗
产品分类
Product CategoryNARG2 is expressed at relatively high levels in dividing and immature cells, and is down-regulated upon terminal differentiation. NARG2 is a novel (S/T)PXX motif-containing nuclear protein; this motif is present in many transcription factors as well as other regulatory proteins that bind to DNA such as histones and RNA polymerase II. Three different isoforms exist.
The ABL1 protooncogene encodes a cytoplasmic and nuclear protein tyrosine kinase that has been implicated in processes of cell differentiation, cell division, cell adhesion, and stress response. Activity of c-Abl protein is negatively regulated by its SH3 domain, and deletion of the SH3 domain turns ABL1 into an oncogene. The t(9;22) translocation results in the head-to-tail fusion of the BCR (MIM:151410) and ABL1 genes present in many cases of chronic myelogeneous leukemia. The DNA-bind
The ABL1 protooncogene encodes a cytoplasmic and nuclear protein tyrosine kinase that has been implicated in processes of cell differentiation, cell division, cell adhesion, and stress response. Activity of c-Abl protein is negatively regulated by its SH3 domain, and deletion of the SH3 domain turns ABL1 into an oncogene. The t(9;22) translocation results in the head-to-tail fusion of the BCR (MIM:151410) and ABL1 genes present in many cases of chronic myelogeneous leukemia. The DNA-bind
Myb-Related Protein B (MYBL2), a member of the MYB family of transcription factor genes, is a nuclear protein involved in the regulation of cell survival, proliferation, and differentiation.$nIt has been shown to activate the cell division cycle 2, cyclin D1, and insulin-like growth factor-binding protein 5 genes.
This gene encodes one of the major intermediate filament proteins of mature astrocytes. It is used as a marker to distinguish astrocytes from other glial cells during development. Mutations in this gene cause Alexander disease, a rare disorder of astrocytes in the central nervous system. Alternative splicing results in multiple transcript variants encoding distinct isoforms. [provided by RefSeq, Oct 2008]
Glial cell line-derived neurotrophic factor (GDNF) and neurturin (NTN) are two structurally related, potent neurotrophic factors that play key roles in the control of neuron survival and differentiation. The protein encoded by this gene is a member of the GDNF receptor family. It is a glycosylphosphatidylinositol(GPI)-linked cell surface receptor for both GDNF and NTN, and mediates activation of the RET tyrosine kinase receptor. This encoded protein acts preferentially as a receptor for NTN